If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+24x-81=0
a = 9; b = 24; c = -81;
Δ = b2-4ac
Δ = 242-4·9·(-81)
Δ = 3492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3492}=\sqrt{36*97}=\sqrt{36}*\sqrt{97}=6\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-6\sqrt{97}}{2*9}=\frac{-24-6\sqrt{97}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+6\sqrt{97}}{2*9}=\frac{-24+6\sqrt{97}}{18} $
| 9x^2+24-81=0 | | 5a+4=2a+10 | | 0=-5^2+100t+15 | | 42/(5/7)=w | | 4/5w=5/6 | | ❓x- | | ❓x- | | ❓x- | | 49x³-(4x-25)²=0 | | 3x-2=101 | | 18p^2-19p=12 | | 2x^2-(3x-4)=3x-5 | | 10-3(2x-2)=-2 | | 2x+5.2=9 | | 3b-15=19 | | 2x=#x | | 110=(x+25) | | 84=4x-12 | | 5x-11+8x-3=90 | | 5x+(-)11+8x+(-)3=90 | | -7x+18=-13x+7 | | 7x+18=-13x+7 | | 6x+8+3=38 | | 5x+3x=19.5 | | -8+2x=-32-35x | | 5y-5-7y-4=4-2y-11 | | x×3=19 | | 9w-1-7w+4=1+2w+5 | | 3t-18=4(-3-13/4t) | | 4x-3(5x/3-3)=12 | | -15w+6=4+2w | | 3y+13=2y |